
1 

 

Testing the potential of Multiobjective 

Evolutionary Algorithms (MOEAs) with 

Colorado water managers 

  

 

Rebecca Smitha, Joseph Kasprzykb, Lisa Dillingc,d 

 

aBureau of Reclamation, 1777 Exposition Dr Ste 113, Boulder, Colorado, 80301 

bDepartment of Civil, Environmental, and Architectural Engineering, University of Colorado, 607 UCB, 

Boulder, Colorado, 80309, USA  

cEnvironmental Studies Program, University of Colorado, 397 UCB, Boulder, Colorado 80309, USA,  

dWestern Water Assessment, University of Colorado, CIRES, 216 UCB, Boulder, Colorado, 80309, USA 

 

Rebecca Smith: resm1653@colorado.edu (corresponding author) 

Joseph Kasprzyk: Joseph.Kasprzyk@colorado.edu 

Lisa Dilling: ldilling@colorado.edu  

 

Highlights 

• Structured workshop effectively provided managers with hands-on tradeoff experience 

• Interactive MOEA tradeoffs aided in creation of decision dominance structure 

© 2016 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0304420316300354
Manuscript_a6326b9f6c330d50b33d7a92f6849ce8

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304420316300354
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304420316300354


2 

 

• Increasing tradeoff info often resulted in revised and divergent portfolio choices 

• Managers suggested opportunities and challenges to using MOEAs for planning 

Abstract 

Multiobjective Evolutionary Algorithms (MOEAs) generate quantitative information about performance 

relationships between a system’s potentially conflicting objectives (termed tradeoffs). Research 

applications have suggested that evaluating tradeoffs can enhance long term water utility planning, but 

no studies have formally engaged with practitioners to assess their perceptions of tradeoffs generated 

by MOEAs. This article examines how practitioners interact with MOEA tradeoffs and reports their ideas 

for how their agencies could use MOEA results. We hosted a group of Colorado water managers at a 

charrette, or structured investigatory workshop, where they directly interacted with tradeoffs, discussed 

how they used the information, and linked their workshop experiences to opportunities for MOEAs to 

enhance their agencies’ planning processes.  Among other interesting results, we found that managers’ 

portfolio preferences diverged as tradeoff information increased and that structured information about 

the relationships between decision levers and performance would be beneficial for interpreting 

tradeoffs.  
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participatory modeling; workshop; multiobjective evolutionary algorithm (MOEA); decision-making; long 
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1 Introduction 

Decision making is a process; when a choice is available to be made, deliberation must occur if an agent 

desires an outcome and is able to take action (Aristotle, 1920). In most decision making processes, 

preferences are constructed based on problem framing, previous experience, and available information, 

time, and resources (Payne et al., 1992; Roy, 1999; Slovic, 1995; Tsoukias, 2008). In combination, these 

factors help decision makers develop what Montgomery (1983) terms a “dominance structure”. A 

dominance structure is a set of cognitive rules that serve to create advantages for certain alternatives or 

neutralize disadvantages of others.  Such a framework is necessary when there is no strictly-optimal 

option. The dominance structure is iteratively built up in stages using mechanisms that help decision 

makers assess relative merits of alternatives and/or alter their internal representations of situations 

until one alternative becomes dominant. This process of creating arguments for and against alternatives 

develops a justification, or basis for reasoning that can be conveyed to others. Justifiability is a 



3 

 

cornerstone of deliberate human decision making (Connolly and Reb, 2012; Payne et al., 1992; Slovic, 

1975; Tversky, 1972), and studying this in technology-based decision support is warranted.   

Multiobjective Evolutionary Algorithms (MOEAs) have been researched and applied as tools to aid 

decision making processes concerning complex systems for which there are multiple conflicting 

performance measures. MOEAs seek to optimize system performance in multiple performance 

objectives, efficiently searching through thousands of alternatives to develop a set that quantitatively 

characterizes the approximate best tradeoffs between those objectives. These quantified tradeoffs 

reveal how much performance in one objective must be forfeited to get better performance in another. 

In the context of developing a long term water resources plan, MOEAs test thousands of alternative 

portfolios of new sources, new infrastructure, and new operations in order to balance between 

performance objectives such as maximizing supply reliability and minimizing environmental impact. 

Several studies have applied MOEAs to long term water resources planning problems. Long term plans 

are essentially overarching decisions about pursuing a set of actions over an extended time horizon. 

Three recent academic examples are Matrosov et al.’s use of an MOEA to develop long term planning 

portfolios for London, balancing cost, energy use, resilience and environmental objectives (2015); Zeff et 

al (2016) optimization of long and short term risk triggers to develop adaptation strategies and support 

regional cooperation between utilities in North Carolina; and Wu et al.’s application of multiobjective 

optimization to identify portfolios of traditional and alternative water sources for Adelaide in 

consideration of cost, emissions, reliability, and the environmental impacts of water and wastewater 

reuse (2017). These studies demonstrate that MOEAs can produce informative tradeoffs for multiple 

aspects of planning in a variety of geographic contexts which could inform agencies’ planning decisions. 

However, none of these examples have undertaken a structured exploration of how a practitioner or 

agency employing an MOEA would interact with or perceive tradeoffs, and thus have not determined 

whether or how they actually aid decision making. 

To study whether the quantitative information found in MOEA tradeoffs contributes to the creation of 

defensible dominance structures that help water managers construct preferences and justify decisions, 

researchers need to be able to observe, interrogate, and analyze practitioners’ usage of tradeoffs. 

Accomplishing this necessitates an interface between practitioners and researchers designed specifically 

around the type of information that results from MOEA-assisted optimization. Here, we can draw on an 

approach called a “charrette” which is used in non-academic settings to achieve a high level of public 

awareness and input on the design or vision of a community project or plan (US EPA, 2014). Charrettes 
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are also used by researchers in the fields of construction management and safety. Research charrettes 

are structured workshops that bring together industry professionals and academics in a relatively short 

but intensely productive session in order to generate discussion and feedback about newly-created 

products or practices intended for industry use (Gibson and Whittington, 2010). Charrettes combine the 

advantages of surveys, interviews, and focus groups in an accelerated time frame, overcoming the 

difficulties of undertaking these methods individually (e.g. low response rates, time commitments from 

both researchers and practitioners, access to data, etc.). Results from applying these mixed methods to 

technical research topics have shown that charrettes can offer both short and long term benefits to 

participating industry professionals and improved validity and reliability of research outcomes (Abowitz 

and Toole, 2010; Green et al., 2010). 

This paper presents the content, methods, and results of a research charrette through which our 

transdisciplinary research team engaged with Front Range, Colorado, water managers over the use of 

MOEA tradeoff information for long term water utility planning. The workshop was designed to discover 

how practitioners used tradeoff information to make decisions, and whether and how the managers 

perceived the information to be useful in their agencies’ planning processes. The goals of the workshop 

were to expose practitioners to an emerging tool and use the collected data to hone future MOEA 

research agendas and target new applications. 

The charrette that we focus on in this paper is the culmination of a larger study that introduced and 

applied the Participatory Framework for Assessment and Improvement of Tools (ParFAIT) (Smith et al., 

2017). The following section briefly introduces MOEAs and presents work from the previous phases of 

our ParFAIT efforts that pertain to this final step in the framework. In Section 3, we describe the 

methods and content from our workshop. Next, we describe the results, and in Section 5 offer 

concluding remarks. 

2 Background 

2.1 MOEA-assisted optimization for long term water utility planning 

For water utilities, planning for long term, sustainable water security is a critical task and a major 

undertaking. Technical staff review alternative planning portfolios and iteratively discuss goals, needs, 

and strategies with Board- or council-level decision makers (CSU, 2017a; MWD, 2015), and, increasingly, 

the public as well (WUCA, 2015). They generally do not find a perfect plan due to the conflicts between 
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the financial, social, and environmental factors that utilities must navigate (Elkington, 2004), but utilities 

strive to make smart, responsible, and justifiable decisions that allow their systems to meet the 

communities’ chosen demand reliability policies in combination with community values.  

Multiobjective Evolutionary Algorithm (MOEA)-assisted optimization has been studied (Matrosov et al., 

2015; Mortazavi et al., 2012; Smith et al., 2018; Wu et al., 2016) and applied (Basdekas, 2014; CSU, 

2017a) as a method to help utilities develop long term plans. While a traditional planning process 

compares the performance of a handful of planning portfolios, MOEA-assisted optimization efficiently 

designs and tests thousands of potential portfolios. This extensive search and evaluation produces 

quantitative information about the system’s performance in multiple objectives and the tradeoff 

relationships between those objectives.  

Performing MOEA-assisted optimization requires a simulation model (already developed by most 

utilities), a problem formulation, an MOEA, and tradeoff visualizations. The problem formulation is a set 

of decision levers, objectives, and constraints that the MOEA uses to construct and compare planning 

portfolios. Decision levers are a utility’s options to modify its system, e.g. building a reservoir or enacting 

conservation; the set of chosen decision levers makes up a portfolio. Objectives are measures of system 

performance that are quantified representations of a system’s goals or purposes, e.g. minimizing 

frequency of lawn watering restrictions or maximizing water in storage. Constraints are numeric limits to 

acceptable performance, e.g. if a portfolio cannot meet 100% of indoor demand at all times it is not 

considered a valid planning approach. 

MOEA-assisted optimization is carried out through many cycles of a computational loop. The MOEA  

generates an initial population of portfolios and feeds each one to the simulation model, which tests the 

portfolio over one or more future scenarios. At the end of the simulation, values for objectives and 

constraints are reported back to the MOEA. This loop iterates thousands of times, during which the 

MOEA intelligently evolves new “generations” of portfolios through both systematic and random 

recombination and mutation of the high-performing portfolios of previous generations. This results in a 

set of nondominated portfolios in which performance improvement in one objective is only achieved by 

sacrificing performance in another; thus, the portfolios “trade off” levels of performance. Analyzing the 

tradeoffs requires careful analysis including visualization techniques, and these are the final component 

of MOEA-assisted optimization. More information about tradeoff visualization is presented in Section 

3.1. 
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Water utility planning is a complex process which may benefit from new technologies. Increased public 

scrutiny, greater mandates to protect social and environmental interests, and heightened awareness of 

future uncertainty all suggest that extensive portfolio search and explicit performance tradeoff 

information would be useful to the agencies. 

2.2 Participatory Framework for Assessment and Improvement of Tools (ParFAIT) 

Many research applications of MOEA-assisted optimization have established the ability of MOEAs to 

generate tradeoff information about water supply systems and produce innovative portfolios that can 

outperform plans developed with human expertise or previously-established operational approaches 

(Maier et al., 2014; Nicklow et al., 2010). While Colorado Springs Utilities and Melbourne Water are two 

notable examples (CSU, 2017b; Kularathna et al., 2015), instances of this  promising tool being applied in 

real-world planning studies are rare. To understand and potentially overcome the limited uptake of 

MOEA-assisted optimization, researchers must consider the factors that lead industries to adopt tools 

and consciously seek to create usable science. That is, researchers must undertake intentional, iterative 

interaction with practitioners to understand their needs, transmit research, and co-produce relevant 

future research directions (Díez and McIntosh, 2009; Dilling and Lemos, 2011; Sarewitz and Pielke, 2007; 

Smits, 2002). 

The Participatory Framework for Assessment and Improvement of Tools (ParFAIT) is a research process 

designed to bring academics and practitioners together in a structured way (Smith et al., 2017). ParFAIT 

is a four-phase research sequence that can be summarized as follows:  

Step 1: Choose a promising research tool and a practical use for it that is supported by academic 

literature and knowledge of the proposed industry; 

Step 2: Hold Workshop 1 to solicit input from practitioners that will inform development of a tool 

testbed. (A testbed is a platform on which the tool can be demonstrated to practitioners.); 

Step 3: Build the tool testbed, iterating with practitioners as necessary to ensure relatability and 

relevance to real-world tool application context; 

Step 4: Hold Workshop 2, a research charrette, to solicit practitioner feedback on the testbed results 

(i.e. results representative of what they could expect if their agencies adopted the tool). 
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Smith et al. (2017) introduced ParFAIT, including the detailed steps and methodology, the supporting 

theory behind the process, and the results of Workshop 1 (briefly summarized below). The ParFAIT 

purpose and process distinguish the study presented in this paper from previous MOEA research studies 

which either applied the tool to a stylized system without input from practitioners or worked with water 

managers to inform its application to a real system. This study instead seeks to create a context and 

platform through which practitioners from many agencies can gain experience using MOEA tradeoffs 

and provide their feedback to researchers. Here, we present results from our application of ParFAIT, 

including a charrette with utility managers to understand their engagement with tradeoffs and the 

overall usability of MOEAs for long-term decision making. 

2.2.1 ParFAIT Workshop 1 

Workshop 1 of our ParFAIT process took place in February, 2015. It brought together water managers 

from six Front Range, Colorado, utilities1 and our research team which was made up of engineering, 

social science, and climate science researchers as well as water utility practitioners. Through targeted 

but free-form group discussions, managers shared their experiences of Front Range management 

challenges and provided feedback and suggestions to inform the elements needed to create an MOEA-

assisted optimization testbed: supply and demand decision levers, performance objectives and 

constraints, future supply and demand scenarios, and important features for a generic but relevant 

hypothetical water supply simulation model.  

Creating a relatable testbed is crucial for the successful application of ParFAIT because it is the basis for 

generating representative results, and also because its components must be recognizable to participants 

in the second ParFAIT workshop. This enables them to quickly grasp the testbed and focus on engaging 

with the results. Based on the information we generated through Workshop 1 and iteration with 

practitioners on our research team, we developed the problem formulation (decision levers, objectives, 

and constraints) and water supply simulation model that make up the Eldorado Utility Planning Model 

testbed. 

2.2.2 ParFAIT testbed: The Eldorado Utility Planning Model and case study 

To demonstrate MOEA-assisted optimization, we used the context of a hypothetical water utility, called 

"Eldorado Utility," undertaking a long term planning process. The Eldorado Utility Planning Model and 

                                                           
1 City of Aurora, City of Boulder, Colorado Springs Utilities, Denver Water, City of Fort Collins, and Northern Water 
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case study generically capture management context relevant to utilities on the Front Range of Colorado 

as well as other regions in the western U.S. The rest of this section will briefly describe Eldorado Utility’s 

supply system and problem formulation, the model, and minimal pertinent Front Range context. 

Technical details about the optimization problem are included in the Appendix. For more Front Range 

context, refer to Smith et al. (2017), and for in depth discussion about the model and case study results, 

refer to Smith et al (2018).  

Much of the western U.S. is severely water-limited and tightly regulated by the prior appropriation legal 

doctrine, or “first in time, first in right” (Hobbs, 2004). One practical outcome of these factors is that, as 

cities grow, they obtain a variety of types of water rights (e.g. storage rights and streamflow diversion 

rights), each with different temporal priorities, and which may be sourced from multiple geographic 

locations. To represent this, Eldorado’s hypothetical system includes: two reservoirs on two different 

rivers with junior priority dates; three direct diversion streamflow rights on a nearby river – one senior, 

one mid-seniority, and one junior; one junior diversion right on a distant river that requires the diverted 

water to be conveyed under a mountain range in order to be stored closer to the utility; and 10,000 

shares of a water wholesale company that Eldorado takes directly from a reservoir owned and operated 

by the wholesaler.  

In many years, junior right holders do not all get their full allotments (Caulfield Jr. et al., 1987; P. O. 

Abbott, 1985); e.g., a reservoir does not necessarily fill or a streamflow right does not always get to 

divert. Streamflow and competition for water on different rivers varies, however, and this means that 

utilities’ water supplies strategically span entire regions. The Eldorado Utility Planning Model 

encompasses 5 basins and 12 water users besides Eldorado. The other users with senior water rights 

often limit the yields from most of Eldorado’s sources, but some also provide opportunities for the 

utility to acquire more reliable supplies.  

The Eldorado Utility is a relatively small water provider and, like much of the western U.S., is expecting 

rapid population growth (State of Colorado, 2017). The utility has a set of 13 decision levers it can use to 

modify its system to meet growing demands. The levers fall into three general categories: pursuing 

“new” water, building new storage, and altering management of reusable water. The first category 

includes decisions about leasing strategic space in other agencies’ reservoirs and obtaining the right to 

move reusable water around the region for more efficient access. Pursuing “new” water refers to 

decisions to acquire rights from regional agricultural or industrial users, or buying shares from water 



9 

 

wholesalers. Conservation is also considered new water because it frees up water that would have 

otherwise not been available to meet growing demands. Building new storage includes decisions about 

whether and how much to expand an existing reservoir and whether to build a new one either 

upstream, downstream, or both. 

Eldorado has defined five2 performance objectives on which to evaluate potential portfolios. They are 

qualitatively described here and also summarized in Table 1. The first objective, “Years in Restriction 1” 

seeks to minimize how frequently Eldorado goes into Level 1 restrictions, which occurs when the utility’s 

storage drops below 75% of average annual demand3. Eldorado’s reliability policy dictates that the 

utility should not enact these restrictions more than 5 times in 25 years. The next objective captures the 

utility’s desire to minimize missed opportunities, i.e. inability to use available water (“Missed Op 

Water”); this measures how much of certain types of water that Eldorado had access to but could not 

use due to incompatible demand timing, lack of storage, etc. Next, Eldorado seeks to minimize “New 

Supply”; this means minimizing the average annual volume of water over the course of the simulation 

that Eldorado acquires through decisions such as buying rights or shares or conserving water (i.e. freeing 

up water to meet new demands). While Eldorado does need more water for a growing population, this 

objective is minimized because drawing more water than necessary away from other users creates social 

and economic disruption in their communities. The “New Storage” objective minimizes the volume of 

newly-built storage within a portfolio because adding infrastructure is expensive, uncertain, and 

environmentally problematic. Finally, measuring “April 1 Storage-to-Demand” is another way for 

Eldorado to evaluate the reliability of their system; this objective seeks to maximize the lowest April 1st 

storage volume over the course of the simulation (i.e. it measures how much water is left in storage at 

the end of the winter drawdown season). 

The single constraint included in the problem formulation was that all portfolios had to meet 100% of 

indoor demand (demand remaining after outdoor water use is prohibited by Level 3 restrictions). 

                                                           
2 The full optimization problem had two additional restrictions-based objectives that were not presented in the 

workshop but which are described in the Appendix. 
3 When storage drops below 50% of annual demand, more severe restrictions are triggered but those were not 

presented in the workshop (see the previous footnote). 
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Table 1. Summary of performance objectives. 

Objective Description 

Years in 

Restriction 1 

Minimize frequency of Level 1 restrictions over 25 years 

Missed Op 
Minimize average annual volume of the sum of: return flows that Eldorado could 

have captured and reused, forfeited Wholesaler shares, and forfeited Ag2 shares 

New Supply 
Minimize average annual new water created by either conserving or acquiring right 

and shares 

New Storage Minimize the volume of newly-built storage in a portfolio 

April 1 Storage-

to-Demand 

Maximize the lowest April 1st storage-to-annual demand ratio during the 25-year 

simulation 

The Eldorado Utility and regional system are modeled using the RiverWare platform (Zagona et al., 

2001). The optimization was performed on a 25-year simulation horizon with a monthly timestep using 

the Borg MOEA (Hadka and Reed, 2013). Optimizations were performed in three different hydrologic 

scenarios: historic, streamflow resulting from a 1°C-perturbed future (qualitatively named “Very Warm” 

for workshop purposes), and streamflow resulting from a 4°C-perturbed future (referred to as “Very 

Hot” in the workshop). These temperatures were based on a previous climate change study in which all 

of our Front Range utilities participated; more information about the choice of these scenarios can be 

found in Woodbury et al (2012) and a description of their generation is in Smith et al (2018).  

3 Methods 

3.1 Interactive tradeoff visualization workbooks 

To explore and understand the quantitative tradeoffs contained within a set of nondominated portfolios 

produced by MOEA-assisted optimization, users need to be able to see the complex relationships 

between the portfolios. This is facilitated by visualizing multiple portfolios at a time in several objectives, 

or dimensions. Being able to see relationships across all dimensions simultaneously provides the 

greatest opportunity to see tradeoffs, since only seeing a subset of the objectives can obscure higher-

dimensional relationships (Kollat and Reed, 2007). Understanding and exploring a large dataset in many 

dimensions requires advanced visualization techniques called visual analytics (Keim et al., 2006; Liu et 

al., 2017; Thomas and Cook, 2006; Woodruff et al., 2013).  
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This study uses parallel axis plotting. The plots use a series of vertical axes to represent as many 

dimensions as desired (Fleming et al., 2005; Herman et al., 2014; Inselberg, 1985; Watson and Kasprzyk, 

2017). Studies have shown that if parallel plots are interactive, first-time users can learn to use them 

effectively with 5-10 minutes of training (Johansson and Forsell, 2016; Siirtola and Räihä, 2006). Previous 

research has assessed whether users can evaluate multiple dimensions to complete a closed-form task 

with the plots, e.g. “Which one of the cars manufactured in 1982 has the slowest acceleration?” (Siirtola 

and Räihä, 2006). Our workshop differs in that we asked participants to use the information from the 

plots to make their own choices, so our results will reflect how practitioners used parallel plots to weigh 

tradeoffs and make judgements. 

To enable the water managers to use parallel plots for subjective analyses, we created plots that 

supported extensive browsing, multiple selections, and comparisons between portfolios and across 

workshop activities. We used Tableau, a commercially-available business analytics program (Jones, 

2014), to create a series of interactive worksheets on which participants could: hover over portfolios to 

get full decision and performance information, select one or more portfolios to highlight them, and 

enter portfolio IDs that changed the colors of those portfolios to register their choices for the activities 

described below. Critically, the workbooks allowed us to save their choices which both recorded them 

for later research analysis as well as allowed us to show managers how their choices changed (or did not 

change) over the course of the workshop. 

Example results from optimizing the Eldorado Utility case study are presented in Figure 1. Briefly 

discussing the example results will facilitate readers’ understanding of the information that water 

managers used during the charrette (described in the next section). As demonstrated below, we showed 

charrette participants the objectives and decisions together to provide all information about the 

portfolios and enable them to evaluate tradeoffs between different objectives while simultaneously 

exploring decision preferences. 
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Figure 1. A screenshot of a Tableau worksheet that corresponds closely with what participants used in the charrette. Two 

portfolios are highlighted to demonstrate tradeoffs. 

The plots in Figure 1 show 20 portfolios4 that resulted from optimizing the Eldorado Utility case study 

using hydrology generated for a 4˚C-warmer (or “Very Hot”) future. The top plot has five vertical axes- 

one for each performance objective. Each of the lines connecting the axes is a portfolio. The vertical 

position at which a portfolio line crosses an objective axis denotes its performance, where lower 

intersection is better. (Note that the objectives and decision levers all have different numerical scales 

and we have normalized the values so that each dimension fully spans its axis.) The portfolios are 

colored based on how many years of Level 1 restrictions they produced (i.e. the performance on the 

rightmost axis); blue lines all have five years in restriction, red lines all have nine years. Two portfolios 

                                                           
4 The full tradeoff sets produced by the Eldorado Utility optimizations included approximately 1000 portfolios each 

(Smith et al., 2018). In order to make the most of limited workshop activity time, we only showed participants 20 

predetermined alternatives that were hand-selected by researchers such that the subset captured a wide range of 

performance for each objective and clearly presented the system’s performance tradeoffs.  
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are highlighted to demonstrate the tradeoffs presented in the plot. The blue portfolio has the best 

possible performance in April 1 Storage-to-Demand and Years in Restriction 1, has medium-poor 

performance in New Storage and Missed Op Water, and the worst possible performance in New Supply. 

These levels indicate the tradeoffs between reliability measures on the right two axes and other system 

performance considerations. Conversely, the red portfolio performs the worst in April 1 Storage-to-

Demand and Years in Restriction 1 but better, sometimes much better, than the blue portfolio in the 

other three objectives. Depending on Eldorado’s preferences and priorities, they might choose 

portfolios with different performance characteristics. 

The bottom plot shows decision lever attributes using a vertical axis for each of the 13 levers. As in the 

objectives plot, the lines connecting across axes are portfolios, and the position at which they intersect 

an axis denotes “how much” of a decision is included in the portfolio. The lower a portfolio line crosses, 

the “less” of that lever is present. Each portfolio line in the objectives plot has a corresponding line in 

the decision levers plot, so we can compare a few of the decisions led to the contrasting performance of 

the two highlighted alternatives described above.  

3.2 MOEA research charrette: June, 2016 

Step four of our application of ParFAIT, a research charrette, provided water managers with hands-on 

experience with MOEA-assisted optimization results. Our goals for the workshop were to:  

1. provide exposure for the emerging tool; 

2. observe managers’ analyses of tradeoff information; 

3. understand how managers relate the tradeoff information to their current needs and practices; 

4. get feedback about what potential uses and barriers managers see in the tool; 

5. learn about the general process of utilities adopting a new tool; and 

6. report any opportunities for future research to meet the needs of practice. 

Nine total participants from six Front Range utilities attended the workshop. The utilities represented a 

wide range of system sizes, and the individuals themselves also spanned a range of experience levels: 4 

managers had over 16 years of experience in Front Range water management; 1 had between 11 and 15 

years; 1 had between 6 and 10 years; and 3 had 0 to 5 years of experience. We also had participants 

with different roles within their respective agencies: four were at a management level and five were 

technical staff. This variety was helpful in getting different perspectives, and the presence of both 
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technical and managerial practitioners was especially encouraging since having advocates at multiple 

levels of administration increases the likelihood of innovation uptake (Daniell et al., 2014). 

3.2.1 Charrette development 

Intense preparation and attention to charrette form, function, and sequencing made it possible for both 

participants and our team to approach the actual experience as a fun day of learning. Once we produced 

tradeoffs for the Eldorado system in multiple future scenarios (completed approximately three months 

prior to the charrette), we began the process of developing content and activities that could effectively 

introduce new concepts and provide an engaging hands on experience. To accomplish this, we 

undertook trials of content with unaffiliated water professionals and water researchers to learn about 

how MOEA novices reacted to various levels of information and visualization complexity. These dry runs 

helped shape the presentation of MOEA and testbed information, choices of activities, timing to 

complete them, and design of the Tableau workbooks. 

The nine practitioner attendees were divided into three groups of three and seated at different tables. 

Each table had a facilitator, and the facilitators were chosen based on their familiarity with workshops 

and water management so that they could prompt and guide discussions in a neutral and 

knowledgeable way. Members of the core research team floated between groups to clarify technical or 

procedural questions. Each manager was given a laptop with the Tableau workbooks pre-loaded so that 

they could complete charrette activities independently. They then reflected on their individual efforts in 

small group discussions which are described in the Results section. 

Data from this workshop includes the portfolio choices that managers made as well as discussions about 

the MOEA testbed tradeoffs, managers’ analytical processes, utilities’ planning approaches, tool 

adoption, potential for MOEAs overall, and workshop content. As such, we made sure to capture 

participants’ portfolio choices but also took audio recordings and notes of each small group of 

managers. Having three types of information allowed us to ensure accuracy and produce results that 

synthesized both qualitative and quantitative responses. Additionally, post-workshop surveys recorded 

participants’ overall perceptions of the usefulness of MOEA-assisted optimization. 

The charrette used a detailed format, custom computer workbooks, and concrete tasks associated with 

the activities, all of which guided information flows between participants and researchers. Compared to 

our first ParFAIT workshop, which relied on free-form discussions about targeted topics to inform the 

direction of the overall project, this workshop was a relatively formal participation mechanism (Newig et 
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al., 2008; Smith et al., 2017). However, the facilitated small group discussion sessions built into each 

activity captured open discussion and impressions from participants and allowed us to access subtleties 

of how utilities plan and operate and how managers relate to their systems. After the workshop we 

electronically surveyed participants about their perceptions of MOEA usefulness. This mixture of 

methods is fundamental to the success of charrettes (Gibson and Whittington, 2010). The incorporation 

of focus group-type activities and discussions was particularly useful for bridging the gap between 

researchers and practitioners because these interactions “provide a clear view of how others think and 

talk” (Morgan, 1993). 

3.2.2 Training and support materials 

In order for participants to fully engage in the workshop and provide researchers with thoughtful, 

relevant feedback about using the tool, they needed to be able to  

1. understand why MOEA-assisted optimization has been proposed as a useful tool for water 

planning;  

2. understand the concept of performance tradeoff sets; 

3. have sufficient understanding and acceptance of the hypothetical utility, its supply and demand 

context, and its policies to be able to focus on tradeoffs; 

4. understand and relate to the problem formulation and planning scenarios; and 

5. effectively operate the Tableau workbooks and interact with parallel plots.  

We covered these topics in a 90-minute introductory presentation. After explaining and taking questions 

about MOEAs and the testbed (content similar to that found in the Background section of this article), 

we held an interactive parallel plot training session. 

In order to introduce parallel plots and tradeoff analysis, we created a simple multiobjective grocery 

shopping problem. Each participant used a Tableau worksheet set up identically to those that they 

would see in later activities that showed plots of performance and decision levers. We defined three 

conflicting objectives – minimize cost, maximize nutrition, and maximize pleasure – through which to 

optimize a set of eleven potential shopping items such as apples, ice cream, eggs, etc. As a group, we 

went through incremental closed-form exercises finding the least expensive shopping list, the most 

nutritious list, etc. The exercises required participants to analyze both the decision and objective plots 

and learn their interactive functions. The total training time was approximately 10 minutes. Questions 
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were encouraged throughout, and no participants expressed any prolonged difficulty in interpreting the 

worksheets. 

To support the managers in the day’s activities, we gave them printed packets that included a diagram 

of the Eldorado Utility Planning Model, current and future utility demands, utility policies, descriptions 

of the decision levers and objectives, and descriptions of the different hydrologic scenarios. The 

diagram, reproduced in Figure 2, conveys the spatial and temporal complexity of the system using icons, 

colors, dates, and arrows. 
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Figure 2. Diagram of the Eldorado Utility Planning Model given to charrette participants in their supporting materials packets. 

Icons, colors, arrows, and dates all convey spatial and temporal relationships between water users. 

3.2.3 Tradeoff activities 

The core of the charrette was organized into four main activities to test behavior with the tool in four 

different situations of increasing complexity. During each activity managers were given 10-15 minutes to 

independently explore tradeoffs presented in Tableau workbooks and apply their own logic (or 

dominance structure) to choose two portfolios.  

The purpose of Activity 1 was to establish initial preferences and create a basis for managers to compare 

decision making with and without tradeoff information. The participants chose one of three portfolios 

developed heuristically by an expert “consultant” (researcher familiar with the model and case study). 

Each portfolio was characterized by its constituent decisions and its firm yield in historical hydrology, but 

no performance tradeoff information was offered. The chosen portfolios from this activity were brought 

back in Activity 4. 

The Activity 2 sequence was designed to ease the managers into evaluating tradeoffs in complex plots, 

to create space for analyzing tradeoffs without the dominant influence of reliability (Smith et al., 2017), 

to have managers be able to explicitly compare their use of different amounts of information, and to do 

all of this without considering the likelihood or implications of climate change on Front Range supplies. 

In Activity 2, Exercise 1, participants were shown performance of 20 algorithm-optimized portfolios in a 

two-objective tradeoff (along with a plot of all of the portfolios’ decisions) and asked to select two 

“portfolios of interest.” The portfolios resulted from optimizing for historical hydrology, and were 

constrained to meet Eldorado’s restrictions-based reliability policy. This was made clear to managers so 

they knew they did not have to worry about reliability in this first activity. In Activity 2, Exercise 2, 

managers were shown the same set of 20 portfolios as in Exercise 1, but now were given performance 

information in a four-objective tradeoff plot (along with the decisions plot). In Activity 2, Exercise 3, 

participants were shown the choices they made from Exercises 1 and 2 in one plot to compare the 

preferences they expressed with different amounts of tradeoff information.  

Activity 3 introduced the frequency of Level 1 restrictions objective and perturbed hydrology. The 

exercises allowed researchers to probe how the presence of the Level 1 restrictions objective influenced 

participants’ perceptions of other tradeoffs and added hydrologic challenges to their decision 

calculations. In Exercise 1, participants were shown 20 algorithm-optimized portfolios that resulted from 

optimizing in a 1°C warmer (Very Warm) future. To understand the implications of the different 
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hydrology, managers referred to the informational packets where plots showing a slightly lower 

magnitude of peak runoff, slightly earlier peak timing, and similar regional flow variability. They were 

again asked to choose two portfolios and had to directly trade off reliability policy performance with the 

other four objectives from Activity 2. Exercise 2 was identical to Exercise 1 except that the 20 portfolios 

were from a set produced by optimizing for a 4°C warmer (Very Hot) future. This scenario had a much 

lower peak runoff magnitude, much earlier peak timing, and lower variability due to lower magnitude 

high-flow years.  

Activity 4 was designed to emphasize to participants that portfolios developed for or optimized under 

specific futures may not be acceptable if the future is different than they planned for. Managers saw the 

exact same set of portfolios from Activity 3, Exercise 2, but now their performance in a set of varied 

hydrologic traces was shown (i.e., in a supply scenario that they were not optimized for). The set of 10 

traces were drawn from all other scenarios, so performance reflected the portfolios’ average 

performances in a wide set of futures. They were again asked to make two choices from this set, and 

while making the choices they could see how each portfolio performed in varied as well as 4°C 

hydrology (so they had two parallel plots of objectives and one plot of decision levers). Managers were 

also shown how their hand-crafted solution from Activity 1 performed in both scenarios and asked to 

reflect on how they felt about those portfolios, which were developed using historical hydrology.  



20 

 

Table 2. Summary of charrette activities. 

Exercise # Objectives Hydrology Description 

Activity 1 0 Historic Choose 1 of 3 handmade portfolios 

Activity 2, Exercise 1 2 Historic Choose 2 portfolios based on 2 objectives 

Activity 2, Exercise 2 4 Historic Choose 2 portfolios based on 4 objectives 

Activity 2, Exercise 3 4 Historic 
Compare choices from 2- and 4-tradeoff 

exercises 

Activity 3, Exercise 1 5 1°C 

Choose 2 portfolios while evaluating explicit 

tradeoffs between reliability and other 

objectives 

Activity 3, Exercise 2 5 4°C 

Choose 2 portfolios while evaluating explicit 

tradeoffs between reliability and other 

objectives 

Activity 4 5 Varied, 4°C 

Choose 2 portfolios with knowledge of how 

they perform in both varied and extreme (4°C) 

hydrology; reflect on choices from Activity 1. 

  

At the workshop, the managers played the roles of engineers at the hypothetical Eldorado Utility who 

were evaluating a new tool for its potential to enhance their upcoming long term planning process. 

Asking them to play a fictional role and use hypothetical (but realistic) tradeoff results helped 

participants to engage more candidly by distancing them from physical, social, and political pressures of 

their own systems. Similarly, for each activity, we asked the managers to choose two portfolios “to 

subject to further analysis” to avoid comparisons with the real-world, complex process that a utility 

undertakes to actually decide on one plan. It was important, however, to ask them to make individual 

choices; this forced them to really grapple with tradeoffs and to use some logical process, and thus 

created a more defined experience for them to discuss with researchers and each other. 

For each exercise (except for Activity 2, Exercise 3 during which participants just compared two sets of 

portfolio choices), the group facilitators asked three main questions to prompt discussion: 

A. What objective performances or tradeoffs made the two portfolios you chose interesting to 

you? 
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B. What decision lever attributes made the solutions interesting to you? 

C. Based on the objectives’ performance, as a manager at your utility, do you think you would have 

chosen the same solutions to investigate further? Why or why not? 

Questions A and B were designed to separate the ways that performance and decision levers impacted 

choices, and question C was designed to emphasize that we wanted the managers to choose freely but 

also provide as much real-world decision making context as they could. 

4 Results 

Throughout the day managers engaged with tradeoffs, facilitators, and each other. They took the 

purposes of the workshop seriously and combined openness to the activities with reflections about their 

own agencies’ planning contexts. As we prompted them with specific concepts, they each interpreted 

and applied them differently. A result of this was that, across nine managers, the portfolio selections 

often varied widely and sometimes the processes they used to make them also varied significantly. 

Rather than report each individual’s choices and processes, below is a description of common themes 

and examples of how logic changed over the course of the day. 

4.1 Managers’ use of tradeoffs 

Within this section about how managers used tradeoff information, there are four subsections. The first 

discusses findings from Activity 2, which presented managers with first two, then four objectives to 

analyze. Brief synopses of two managers’ decision processes and how they relate to dominance 

structuring are included. The second subsection of results is based on Activity 3, which introduced a fifth 

objective (Level 1 restrictions) and two new, more hydrologically challenging scenarios. Subsections 

three and four present findings that emerged throughout all four activities. 

4.1.1 Tradeoffs in two objectives vs. in four objectives 

In Activity 2, Exercise 1, where participants saw tradeoffs in two objectives, three general strategies 

emerged for choosing portfolios of interest. Five managers weighted performance in the objectives 

equally, two performed cost-benefit analyses between the two objectives, and two managers prioritized 

performance in one objective over the other. Figure 3 shows the results of Manager B4’s cost-benefit 

analysis. The manager started by picking the portfolio with the least storage, then worked incrementally 

up the New Storage axis to find out how much better the performance in Missed Opportunity could get. 

The manager ultimately tried to find the portfolios where the tradeoff was “reasonable”- where the 
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Fig. 3 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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